Aesthetic Laser Treatments

The XP-2 Focus is the ideal choice for combining aesthetic surgical procedures with a wide range of popular non-surgical aesthetic laser treatments.

Vascular lesions; acne, wrinkles, and more...

The XP-2 Focus Nd:YAG laser penetrates to a depth of 5-6 mm into the skin, allowing for fast and effective transdermal treatments for vascular lesions. For patients with active acne, the laser safely penetrates the outer layer of the skin to effectively target excessive sebum and redness, and reduce the risk of developing new acne inflammation. It can also be used for a number of other aesthetic procedures such as the treatment of wrinkles.

Why Nd:YAG?

Homogeneous absorption – deep penetration

The Nd:YAG laser is homogeneously absorbed in the three main chromophores targeted in surgical and aesthetic laser treatments, namely, melanin, blood and water. This makes it an ideal laser source for those who seek versatility and flexibility for their practice by combining surgery and non-ablative aesthetics. For decades the deeply penetrating 1064 nm wavelength has been accepted as safe, effective, and a fast solution for vascular lesions, acne, wrinkles and more...

The XP-2 Focus features the ultra-short-pulsewidth FRAC3® technology, which produces a unique 3-dimensional pattern of fractional treatment inside the skin, resulting in highly effective, minimally invasive treatments with faster healing.

In addition to its extraordinary surgical abilities, the XP-2 Focus is also equipped with a pulsed Nd:YAG laser that is approved for a wide range of aesthetic indications, including wrinkles, port wine stains and keloid scars.

Patented VSP technology for perfect control and safety

Nd:YAG homogeneous absorption makes it safe to use on all skin types, without compromising patient comfort and treatment efficacy. Fotona patented VSP (Variable Square Pulse) technology creates precisely controlled sequences of square-shaped pulses to maximize safety and ensure ultimate performance and patient comfort.

FRAC3® for comfortable aesthetic treatments

The XP-2 Focus features the ultra-short-pulsewidth FRAC3® technology, which produces a unique 3-dimensional pattern of fractional treatment inside the skin, resulting in highly effective, minimally invasive treatments with faster healing.

Podiatric Treatments

How does Laser-Assisted Lipolysis Work?

Laser-assisted lipolysis is a fat reduction treatment in which the canula with a laser fiber targeting the fatty tissue. The melted fatty tissue deposits and topographically awkward areas like belly fat can be absorbed by the body or removed by the physician. Fotona’s laser-assisted lipolysis procedure does not require the use of a general anesthetic. A very fine laser fiber is inserted into the treatment area, where the laser light causes swelling and rupture of adipocytes. The melted fat can either be absorbed by the body or removed by the physician. Fotona’s laser-assisted lipolysis procedure does not require the use of a general anesthetic. A very fine laser fiber is inserted into the treatment area, where the laser light causes swelling and rupture of adipocytes. The melted fat can either be absorbed by the body or removed by the physician. Compared to mechanical liposuction, laser-assisted lipolysis allows XP-2 Focus to reduce fat and volume to perform the required treatment, requiring less external force and exertion from the surgeons. Thermally induced coagulation minimizes bleeding and trauma as well as post treatment bruising and swelling, leading to ideal patient comfort and less patient acceptance. These are important advantages for both the patient and practitioners – especially when treating resistant fatty tissue deposits and topographically awkward areas like the upper arm and thighs.

Laser-Assisted Lipolysis

The XP-2 Focus’ Q-switched Nd:YAG laser can generate peak powers beyond 1.6 J/cm² providing maximum speed and performance efficiency in surgical procedures. It is the ideal tool for laser-assisted lipolysis, which is one of the least invasive surgical bodyshaping methods available to aesthetic practitioners.

Fotona’s laser-assisted lipolysis procedure does not require the use of a general anesthetic. A very fine laser fiber is inserted into the treatment area, where the laser light causes swelling and rupture of adipocytes. The melted fat can either be absorbed by the body or removed by the physician. Fotona’s laser-assisted lipolysis procedure does not require the use of a general anesthetic. A very fine laser fiber is inserted into the treatment area, where the laser light causes swelling and rupture of adipocytes. The melted fat can either be absorbed by the body or removed by the physician. PHOTO: Fotona Laser Research

Before After

Before After

Before After

Before After

Before After

Before After

FRAC3® has an advantage over conventional two-dimensional fractional treatments in that not all of the targeted skin tissue is uniformly thermally affected or removed. FRAC3® is non-ablative and leaves the maximum of healthy tissue untouched, thus promoting rapid healing and minimizing patient downtime.

The secret to safe, effective and minimally invasive transdermal treatments lies in Nd:YAG’s ultra-short-pulsewidth range. Its pulses have been shown to selectively heat small skin imperfections and inhomogeneities of a <50 μm size range throughout the skin tissue, effectively removing the targeted skin tissue.

FRAC3® laser treatment features 3 different fractional treatments in 1 treatment: FRAC3® 1064 nm high peak power laser, providing an instantaneous coagulation effect for the targeted lesion. FRAC3® 1064 nm low peak power laser for non-ablative treatment of vascular lesions and light superficial pigmentation. FRAC3® 1064 nm non-ablative transdermal laser treatment for the targeted tissue.

The final result of ClearStepsTM is the growth of new, healthy nails.

Laser induced damage islands as healing centers:

The XP-2 Focus’ long-pulse Nd:YAG laser is also exceptionally effective for wart removal, as the Nd:YAG laser’s targeted absorption of vascular tissue coagulates the wart’s blood vessels, causing immediate necrosis.

Laser induced damage islands as healing centers:

The XP-2 Focus’ long-pulse Nd:YAG laser is also exceptionally effective for wart removal, as the Nd:YAG laser’s targeted absorption of vascular tissue coagulates the wart’s blood vessels, causing immediate necrosis.

FRAC3® has a distinct advantage over conventional two-dimensional fractional treatments in that not all of the targeted skin tissue is uniformly thermally affected or removed. FRAC3® is non-ablative and leaves the maximum of healthy tissue untouched, thus promoting rapid healing and minimizing patient downtime.

The secret to safe, effective and minimally invasive transdermal treatments lies in Nd:YAG’s ultra-short-pulsewidth range. Its pulses have been shown to selectively heat small skin imperfections and inhomogeneities of a <50 μm size range throughout the skin tissue, effectively removing the targeted skin tissue.

FRAC3® laser treatment features 3 different fractional treatments in 1 treatment: FRAC3® 1064 nm high peak power laser, providing an instantaneous coagulation effect for the targeted lesion. FRAC3® 1064 nm low peak power laser for non-ablative treatment of vascular lesions and light superficial pigmentation. FRAC3® 1064 nm non-ablative transdermal laser treatment for the targeted tissue.

The final result of ClearStepsTM is the growth of new, healthy nails.

Laser induced damage islands as healing centers:

The XP-2 Focus’ long-pulse Nd:YAG laser is also exceptionally effective for wart removal, as the Nd:YAG laser’s targeted absorption of vascular tissue coagulates the wart’s blood vessels, causing immediate necrosis.

Laser induced damage islands as healing centers:

The XP-2 Focus’ long-pulse Nd:YAG laser is also exceptionally effective for wart removal, as the Nd:YAG laser’s targeted absorption of vascular tissue coagulates the wart’s blood vessels, causing immediate necrosis.

How does Laser-Assisted Lipolysis Work?

Laser-assisted lipolysis is a fat reduction treatment in which the canula with a laser fiber targeting the fatty tissue. The melted fatty tissue deposits and topographically awkward areas like belly fat can be absorbed by the body or removed by the physician. Fotona’s laser-assisted lipolysis procedure does not require the use of a general anesthetic. A very fine laser fiber is inserted into the treatment area, where the laser light causes swelling and rupture of adipocytes. The melted fat can either be absorbed by the body or removed by the physician. Compared to mechanical liposuction, laser-assisted lipolysis allows XP-2 Focus to reduce fat and volume to perform the required treatment, requiring less external force and exertion from the surgeons. Thermally induced coagulation minimizes bleeding and trauma as well as post treatment bruising and swelling, leading to ideal patient comfort and less patient acceptance. These are important advantages for both the patient and practitioners – especially when treating resistant fatty tissue deposits and topographically awkward areas like the upper arm and thighs.

Laser-Assisted Lipolysis

The XP-2 Focus’ Q-switched Nd:YAG laser can generate peak powers beyond 1.6 J/cm² providing maximum speed and performance efficiency in surgical procedures. It is the ideal tool for laser-assisted lipolysis, which is one of the least invasive surgical bodyshaping methods available to aesthetic practitioners.

Fotona’s laser-assisted lipolysis procedure does not require the use of a general anesthetic. A very fine laser fiber is inserted into the treatment area, where the laser light causes swelling and rupture of adipocytes. The melted fat can either be absorbed by the body or removed by the physician. Compared to mechanical liposuction, laser-assisted lipolysis allows XP-2 Focus to reduce fat and volume to perform the required treatment, requiring less external force and exertion from the surgeons. Thermally induced coagulation minimizes bleeding and trauma as well as post treatment bruising and swelling, leading to ideal patient comfort and less patient acceptance. These are important advantages for both the patient and practitioners – especially when treating resistant fatty tissue deposits and topographically awkward areas like the upper arm and thighs.

Laser-Assisted Lipolysis

The XP-2 Focus’ Q-switched Nd:YAG laser can generate peak powers beyond 1.6 J/cm² providing maximum speed and performance efficiency in surgical procedures. It is the ideal tool for laser-assisted lipolysis, which is one of the least invasive surgical bodyshaping methods available to aesthetic practitioners.

Fotona’s laser-assisted lipolysis procedure does not require the use of a general anesthetic. A very fine laser fiber is inserted into the treatment area, where the laser light causes swelling and rupture of adipocytes. The melted fat can either be absorbed by the body or removed by the physician. Compared to mechanical liposuction, laser-assisted lipolysis allows XP-2 Focus to reduce fat and volume to perform the required treatment, requiring less external force and exertion from the surgeons. Thermally induced coagulation minimizes bleeding and trauma as well as post treatment bruising and swelling, leading to ideal patient comfort and less patient acceptance. These are important advantages for both the patient and practitioners – especially when treating resistant fatty tissue deposits and topographically awkward areas like the upper arm and thighs.

Laser-Assisted Lipolysis

The XP-2 Focus’ Q-switched Nd:YAG laser can generate peak powers beyond 1.6 J/cm² providing maximum speed and performance efficiency in surgical procedures. It is the ideal tool for laser-assisted lipolysis, which is one of the least invasive surgical bodyshaping methods available to aesthetic practitioners.
Endovenous Laser Therapy

Fotonas endovenous laser therapy works on the principle of ablation and photocoagulation of a vein interior through laser-induced thermal effects. It is a minimally invasive procedure in which an optical fiber is inserted into the vein and slowly withdrawn while the laser is activated. The treated vein subsequently contracts and the vein wall is destroyed. The healthy veins that surround the closed vein can then restore the normal flow of blood to the treated area.

Global Leader for over 45 Years

Since 1964 Fotona has set industry standards of excellence in laser systems for medicine, communications, industry, and defense. Our laser systems are the result of over 45 years of experience and expertise in producing high-tech products for healthcare professionals. Consequently Fotona is a globally recognized leader and pioneer in the innovation, development and manufacture of laser systems.

High Technology - Made in Europe

As one of the top manufacturers of medical laser systems, our commitment to state-of-the-art, house production sets us apart from the competition, which typically subcontracts the production process. Fotona is a house manufacturer and stringent testing of all components, in compliance with applicable international standards, ensures that our systems are of the highest quality, reliability and durability. When you choose Fotona, you choose the highest performance, best-made laser systems in the world.

Best Training and Support

From the makers of the award-winning LightWalker system: www.laserandhealth.com

Why is Nd:YAG more Effective in Endovenous Therapy than other Lasers?

The Nd:YAG laser’s ability to optimally deliver laser energy into vein walls and limit undesirable mechanical and thermal effects in the surrounding tissues makes it the ideal wavelength for laser occlusion of varicose veins.

Research

In a recent study, endovenous laser therapy was conducted on 525 legs at a single clinical site over a 2.5 year period using Fotona’s XP-2 Focus laser system. After 1 year, the results revealed that 88.2% of veins in the 15W to 18W average power treatment group (102 legs) remained occluded, while in the 25W group (423 legs) 98.5% of veins remained occluded. Side effects were minimal and all patients, even those whose veins were not fully ablated, reported satisfaction with the treatment. Sikovec A (2009) The Treatment of Saphenous Vein Occlusion by EVLA with 1064 nm VSP Nd:YAG laser. LAHA Journal of the Laser and Health Academy 2: 6–9.

Although both diode lasers and Nd:YAG lasers have been found to be effective, studies have noted distinct differences between these laser technologies. Namely, QCM Nd:YAG modalities reportedly produce fewer side effects and provide greater patient comfort than diode laser treatments. Endovascular therapy with the XP-2 Focus is quickly becoming a proven choice alternative to traditional therapies in terms of efficacy, treatment time, patient comfort and cost.

Best Performance


The Highest Performance

Since 1964

XP-2 Focus

- Most Versatile Nd:YAG Medical Laser System
- Exceptional Procedure Control with Extended Pulse Duration Ranges
- Transdermal Aesthetic Treatments
- Endovenous Laser Therapy
- Laser-Assisted Lipolysis
- Approved for Podiatry Indications
- High Technology - Made in Europe

Fotona, d.d.
www.fotona.com
info@fotona.com

Before

After

Photo cases provided courtesy of Latinmed, Inc., D. Maletic MD, A. Sikovec MD, R. Sult RN, J. Kozarev MD, PhD

Why is Nd:YAG more Effective in Endovenous Therapy than other Lasers?

The Nd:YAG laser’s ability to optimally deliver laser energy into vein walls and limit undesirable mechanical and thermal effects in the surrounding tissues makes it the ideal wavelength for laser occlusion of varicose veins.

Research

In a recent study, endovenous laser therapy was conducted on 525 legs at a single clinical site over a 2.5 year period using Fotona’s XP-2 Focus laser system. After 1 year, the results revealed that 88.2% of veins in the 15W to 18W average power treatment group (102 legs) remained occluded, while in the 25W group (423 legs) 98.5% of veins remained occluded. Side effects were minimal and all patients, even those whose veins were not fully ablated, reported satisfaction with the treatment. Sikovec A (2009) The Treatment of Saphenous Vein Occlusion by EVLA with 1064 nm VSP Nd:YAG laser. LAHA Journal of the Laser and Health Academy 2: 6–9.

Although both diode lasers and Nd:YAG lasers have been found to be effective, studies have noted distinct differences between these laser technologies. Namely, QCM Nd:YAG modalities reportedly produce fewer side effects and provide greater patient comfort than diode laser treatments. Endovascular therapy with the XP-2 Focus is quickly becoming a proven choice alternative to traditional therapies in terms of efficacy, treatment time, patient comfort and cost.